The Effects of Different Linkers on Methotrexate-DHFR Interactions

Brandon Cen
University of Iowa

Background
Atomic Force Microscopy (AFM):
- One of the most effective tools for high-resolution imaging and force spectroscopy in biophysics.
- Laser focuses on the back of a cantilever containing a very sharp tip and reflects onto a photodiode.
- Tip raster scans across the sample surface, creating an image from the movement of the laser.
- Molecular Recognition Force Spectroscopy (MRFS): chemically attaching molecules on the tip and measuring interaction forces with them and the sample surface.

Diagram of AFM and picture taken from University of Iowa Dept. of Chemistry

- Polyethylene glycol (PEG) linker: a short polymer between a molecule and the tip it is attached to, designed to reduce nonspecific forces between the surface and tip.
- Dihydrofolate reductase (DHFR) is an enzyme important for its role as a target for anti-cancer drugs, specifically methotrexate (MTX).

Objective
To explore different linking techniques to more accurately and efficiently quantify biomolecular forces.

Hypothesis: The addition of DNA and PEG linkers will allow separation of nonspecific interactions from data and provide more accurate force analysis.

Methods
- Test a new linker method involving the addition of DNA on to the sample surface for DHFR to bind on top of it.
- Better ensures only interactions between MTX and single DHFR molecules and reduces nonspecific forces between the tip and the surface.
- Ethanol amine to block DHFR from binding on any surface besides tops of DNA.

AFM-scanned image with white circles showing vertical DNA along the sample surface

- 3 setups interacting:
 - DHFR on top of DNA bound to mica and directly tip-fixed MTX
 - DHFR homogenously spread as a monolayer on gold and MTX tip-fixed via PEG linker
 - DHFR on top of DNA bound to mica and MTX tip-fixed via PEG linker

Data compared to previous study using homogenous DHFR layer on gold and directly tip-fixed MTX
- Force plots generated with respect to tip-sample separation distance.
- Control measurements made by blocking active sites with free MTX or measuring DHFR-free surface spots

Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Average Rupture Force (pN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No linker/DNA</td>
<td>245 ± 110</td>
</tr>
<tr>
<td>PEG linker/DNA</td>
<td>194 ± 64</td>
</tr>
<tr>
<td>PEG linker/1 Monolayer</td>
<td>230 ± 85</td>
</tr>
<tr>
<td>PEG linker/2 Monolayer</td>
<td>120 ± 40</td>
</tr>
</tbody>
</table>

Conclusions
- Setups using DNA show a smaller deviation in average rupture forces compared to that of experiments using a monolayer.
- Produced histograms show a significant symmetry, suggesting a higher accuracy in MRFS.
- Overall decrease in average rupture values in experiments utilizing linkers implies a removal of nonspecific interactions previously increasing force readings.
- Significant decrease in deviation and average rupture forces in experiment using both PEG linker and DNA confirms the ability for the two linker types to work simultaneously to ensure single-molecule adhesion events.

Implications
- Developed a new approach to utilize AFM for sensitive and selective measurements of microscopic forces on a single molecule level.
- The methodology is expected to be utilized for the direct measurement of biomolecular dynamics through the analysis of force fluctuations due to enzymatic motions.
- Advancements in viewing enzyme conformation changes when proteins interact with specific ligands.
- For example, could further investigation of the kinetics of the moving loop of DHFR over methotrexate during binding complex, possibly leading to new research in enzyme catalysis dynamics.

References

Acknowledgements
Mentor: Holly Morris
Professor: Alexei V. Tivanski, Ph.D.