Expression and Purification of Oxygen Dependent Domains of Hypoxia-Inducible Transcription Factor

Dorothy Yuan,
James Latanski, Research Assistant; Dhiraj Srivastava, Postdoctoral fellow, Ph.D;
Mishtu Dey, Principal Investigator Ph.D

In this project, we express and purify the oxygen dependent domain (ODD) protein of the Hypoxia-Inducible Factor (HIF). Purification is a step toward further studies in ODD interactions as a substrate with other proteins, specifically the Prolyl Hydroxylase domain enzymes (PHDs). This could be useful in studies relating to cancers, cardiac diseases, angiogenesis, and other severe diseases.

Background
- Hypoxia: state with limited oxygen supply
- PHD and HIF interaction key in oxygen homeostasis
- Helps cell activate gene transcriptions
- HIF is heterodimeric; HIF-1α and HIF-2α
- ODD is a part of HIF-1α
- ODD contains two prolyl residues
- 3 PHDs: PHD1, PHD2, PHD3
- Project focuses on PHD3
- PHD3 production increased in hypoxia
- PHD1, PHD2, down regulated
- Normoxia, ODD undergoes hydroxylation by PHD
- Modified, -OH groups added to prolines
- Hypoxia, ODD not modified
- HIF-1α activates gene transcriptions
- Helps maintain the cell oxygen level
- Hydroxylation by PHD has many affects:
 - Cancer, angiogenesis, metabolism, cell survival, cell invasion, metastasis
 - Associated with cell apoptosis, cardiac diseases, heart diseases
 - ODD as potential target for therapies and cures to some heart disorders
- Activation by mutation or hypoxia
 - Oxidative to glycolytic metabolism
 - Increased glycolysis and lactate
 - Decreased consumption of oxygen
 - Commonly seen in cancer cell

Methods
Steps to obtain ODD construct
1. Transformation, GST-ODD fusion protein construct into BL21 competent cells
2. Innoculated 1 L culture with 250 mL starter culture
3. Grew cells at 37°C in 2xTY media (16g Bacto-tryptone, 10g Yeast Extract, 5g NaCl for every 1 liter)
4. OD-1.0, induced with 0.5mM IPTG
5. Continued growth for four hours in 37°C
6. Centrifuged culture for 30 minutes at 5000 rpm to obtain cell pellet

ODD purification process
7. Resuspended cell pellet in a lysis buffer (50mM Tris-HCl, 150mM NaCl, 0.1% Tween-20, 1mM PMSF, pH 7.5)
8. Used a sonicator to breakups (4 min)
9. Centrifuged at 18000 rpm at 4°C for 45 minutes to bring excess cell parts to pellet
10. Loaded supernatant (containing GST-ODD fusion) through glutathione column
11. Washed column with wash buffer (20mM Tris-HCl, 100mM NaCl, 0.1mM glutathione, pH 7.5)
12. To obtain GST-ODD fusion protein, eluted fusion with elution buffer (20mM Tris-HCl, 50mM NaCl, 5mM glutathione, pH 7.5)
13. Collected five sample fractions, which contained GST-ODD fusion protein

Results
- GST-ODD fusion protein suspended in lysis buffer (50mM Tris- HCl, 150mM NaCl, 0.1% Tween-20, 1mM PMSF, pH 7.5)
- GST-ODD fusion bound onto glutathione agarose resin
- Used elution buffer (20mM Tris-HCl, 50mM NaCl, 5mM glutathione, pH 7.5) to obtain and isolate protein

Implications
- Purification and isolation process only partially successful
- Used UV-visible spectrophotometry by a nanodrop to determine protein concentration
- Concentration of GST-ODD fusion protein determined to be 19 mg/mL

References

Acknowledgements
I would like to thank the Belin Blank Center and the University of Iowa for this research opportunity and the lab group members of the Dey Lab for helping me with various things related to my research project.