Small gestational sac to crown-rump length difference in IVF patients associated with increased risk of spontaneous abortion

Sruthi Palaniappan, Joshua Kapfhamer MD, MA, Karen Summers MPH, Divya Shah MD, Michelle Krohn MD, Ginny Ryan MD, MA

Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics

Background

- In 2013, 174,962 In Vitro Fertilization (IVF) cycles were performed in the US(5).
- Most pregnancy losses occur within the first 7 weeks of pregnancy(1, 7, 8).
- 15-20% of clinical pregnancies end in spontaneous abortion(1, 7, 8).
- Ultrasound is commonly used to test fetal viability(4).
- Instrumental ultrasonographic markers in early gestation include mean gestational sac diameter (mGSD) and crown-rump length (CRL)(4).
- Gestational sac is the first sign of an intrauterine pregnancy on ultrasound and can be seen using transvaginal ultrasound at 3-5 weeks gestation(5).
- CRL provides the most accurate biometric parameter for pregnancy dating when measured between 7 and 10 weeks(7).
- There is no direct correlation between difference in mGSD−CRL and gestational age at time of delivery.

Objective

- Define incidence of small mGSD−CRL in IVF patients.
- Examine rates of pregnancy loss based on mGSD−CRL difference.
- Examine rates of birth outcomes based on mGSD−CRL difference.
- Study will help give IVF patients and providers accurate information to guide expectations and management following early obstetrical ultrasounds.

Methods

Retrospective cohort study conducted with data from UIHC IVF patients from Nov. 2011-Dec. 2014.

- Fields examined: Age, BMI, Race, Parity, History of recurrent pregnancy loss, Cycle type, ICSI, Gestational age at time of delivery, Delivery/SAB date.
- Cycles matched based on transfer date.
- Fields examined: CRL, mGSD, Subchorionic hemorrhage.
- Performed tests using SPSS: Chi square.
- Descriptive statistics.

Sample Characteristics

- Patient inclusion/exclusion criteria:
 - 773 IVF cycles with autologous eggs and 1 gestational sac on early ultrasound.
 - 684 cases with delivery or abortion date present.
 - 69 cases without delivery or abortion date present.
 - 680 cases with singleton gestation.
 - 4 cases with monoamniotic twin gestation (excluded).
 - 422 cases with mGSD and CRL measurements available (retained for analysis).
 - 258 cases without CRL and/or mGSD measurements available (excluded).

Total sample (n=422)

- Age, mean ± SD: 32.89 ± 4.43
- BMI, mean ± SD: 27.1 ± 6.72
- White race, n (%) (n=404): 375 (93%)
- Parity (# of previous deliveries), mean ± SD: 33 (8%)
- 2 or more previous pregnancy losses: 0.63 ± 0.72
- Fresh cycle, n (%): 266 (63%)
- ICSI (Intra-cytoplasmic sperm injection), n (%): 169 (40%)
- # embryos transferred, mean ± SD: 1.42 ± 0.61
- mGSD−CRL (mm), mean ± SD: 10.17 ± 4.02
- Subchorionic hemorrhage, n (%): 90 (21%)
- Spontaneous abortion, n (%): 86 (20%)

Conclusions

- There is an increased risk of spontaneous abortion with a mGSD−CRL difference <5 mm.
- There is no direct correlation between difference in mGSD−CRL and gestational age at time of delivery.
- There are 2 distinct groups for gestational age at delivery:
 - 1st trimester pregnancy losses
 - 3rd trimester deliveries

Study Implications

- This study provides information to further understand the trend in mGSD−CRL difference and spontaneous abortion rate in IVF patients.
- Data collected in this study shows a lower spontaneous abortion rate in IVF patients with a small mGSD−CRL difference than in the general population.
- Current findings raise questions as to what cutoff value for mGSD−CRL difference is diagnosable as high risk for spontaneous abortion in IVF patients.
- Future research:
 - Establish a more precise mGSD−CRL cutoff associated with early spontaneous abortion in IVF patients.
 - Analyze associations between mGSD−CRL differences, infertility diagnoses, and pregnancy complications.

Acknowledgements

- Special thanks to Dr. Ryan for welcoming me into her research team this summer, and to Joshua Kapfhamer and Karen Summers for their guidance.
- Thank you to the Secondary Student Training Program for fostering my love for science and research.

References